Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia coli cells.

نویسندگان

  • D Iswantini
  • K Kano
  • T Ikeda
چکیده

Apo-glucose dehydrogenase existing in Escherichia coli is converted to the holoenzyme with exogenous pyrroloquinoline quinone (PQQ) and Mg(2+). Catalytic behaviour of the E. coli cells with the holoenzyme is characterized by a Michaelis-Menten-type equation with a catalytic constant of the cell and apparent Michaelis constants for D-glucose and an artificial electron acceptor added to the E. coli suspension. The catalytic constant is expressed as the product of the number of molecules of the enzyme contained in an E. coli cell (z) and the catalytic constant of the enzyme (k(cat)), which were determined to be 2.2x10(3) and 6.8+/-0.8x10(3) s(-1) (phenazine methosulphate as an electron acceptor) respectively. Kinetics of the in vivo holoenzyme formation can be followed by an enzyme-electrochemical method developed by us. The rate constants for the reactions of apoenzyme with PQQ (k(f,PQQ)) and with Mg(2+) (k(f,Mg)) were determined to be 3.8+/-0.4x10(4) M(-1).s(-1) and 4. 1+/-0.9 M(-1).s(-1) respectively. Equilibrium constants for the binding of apoenzyme to PQQ and Mg(2+) were determined as the dissociation constants K(d,PQQ(Mg)) and K(d,Mg) to be 1.0+/-0.1 nM and 0.14+/-0.01 mM respectively. The dissociation constants for Ca(2+) were also determined. The holoenzyme, once formed in E. coli, returns gradually to the apoenzyme in the absence of PQQ and/or Mg(2+) in solution. EDTA was effective to remove Mg(2+) from the enzyme in the cells to deactivate the enzyme completely, while PQQ remained in the E. coli cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.

The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalytic efficiency between substrates are mainly related to differences in their affinity for the enzyme....

متن کامل

Evidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens

Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...

متن کامل

Effects of Parathion Toxin on Glutamate Dehydrogenase Enzyme Activity and Diabetes Induction

Introduction: The main propose of this study was to determine the effect of parathion on activity of glutamate dehydrogenase (GDH) as a key enzyme in second phase secretion of insulin and to determine serum glucose levels in rats. Methods: To conduct the study, 35 rats were randomly divided into five groups (n=7). The serum glucose level of each group was measured and the total average was ca...

متن کامل

Production of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System

Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...

متن کامل

MOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE

Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 350 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2000